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EXCITATION OF LOW-FREQUENCY FIELDS IN A MULTIMEMBRANE CHAMBER* 

V.P. IVANOV 

The problem of the excitation of a given field of ideal fluid velocities 
and accelerations is considered, when the fluid fills a chamber which is 
small compared with the wavelength. An oscillatory flow is excited by 
flexible membranes in the chamber walls. The membrane oscillations are 
realized by the periodic injection and drainage of fluid into and from 
compartments behind the membranes. Low-frequency excitation of a liquid 
phase medium in a space whose linear dimensions are less than the exci- 
tation wavelength is used for a variety of technological processes /l/. 
It is then important to ensure, not only given energy characteristics of 
the oscillatory flow, but also a pre-assigned distribution of the field 
of fluid velocities and accelerations. 

1. A rectangular chamber Do = {z, y, z:O<z<L,, o<!/<L,, *O<.z<LL,} is filled with 
an ideal fluid of density pr, On the chamber walls there are hatches for loading and unloading, 
which are interpreted as free fluid surfaces, and where membranes are mounted. Into thespaces 
D, (n = 1, . . ., 2N) behind the membranes, ideal fluid of density pz is periodically injected 
and removed, with period &r/o, where o is the angular frequency. The variable pressure of 
the periodic fluid flow in domains D, excites oscillations of the membranes. These oscil- 
lations are transformed into periodic oscillatory flow of the fluid in domain Do. It is 
assumed that C&C-'((1, where L is the characteristic dimension of the chamber, c is the 
velocity of soundina fluid of density pr, and vc,-=< 1, where v and cr are the fluid 
velocity modulus and the velocity of sound in the fluid in the compartments D, behind the 
membranes. 

The potential cp of the velocity field in domain D o is the solution of the following 
problem: 

Acp = 0; @Ian = 0 on r 0.1) 

Here Nan is the derivative with respect to the outward normal, r is the part of the 
boundary of Do formed by the rigid walls, acp/& = -id,, 2, = iog-‘cp on the free surfaces 
r,i = (5, Y, z: 0 <x < Lr, I,, < Y <lU, i = 0, 1, l,, = 0, I,, = Lo, z = La), where Zj isthedeviation 
of the free surface from the equilibrium position, h/an = -iow,, p,, = ---Q” on the mean 
surfaceofthe n-th membrane, q,, is the load on the mean surface of a membrane, w, is the 
normal component of the sag of the n-th membrane, and p is the pressure on the mean surface 
from the fluid of density pr. 

In the compartments D, the flow velocity potentials (P,, satisfy Poisson's equation 

AT,, = m$I Q,,ei0”6 (x - E&n, y - T$~, 2 - &) e-‘Ot (1.2) 

n = I,, . ., 2N 

where (Ek I&, %) are the coordinates of the sources with deliveries q,,,, and delay 
phases 8.,6 (x) is the delta function, and t is time, which is a parameter of the problem. 
On the rigid walls we have the no-flow condition, and on the membranes,. the matching condition 
a&an = -iolL;I, pn = -qnl. where p,, and q,,l are the pressure and load on the mean membrane 
surface from the second fluid. 

The pressure in domains Do and D, (n = 1, . . ., 2N), is found from the linearizedequations 
of motion 

P - PO - w (LO - 4 = iop, 9 lx, y, z)e-‘~’ 
pn - pno - p& (Lc, - z) = iop,cp, (2, y, z)e+‘, L, = max 2 

WV, GE Dn 

(1.3) 

(Pm Pno are the pressuresinthe working chamber and the n-th compartment at zero sag of the 
membrane and g is the vertical component of the acceleration due to gravity). 
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We consider the problem of the excitation in a sub- 
domain of Do of an oscillatory flow with given vertical 

r""r ~~~~~~:"%,"'""~ 
with modulus not less than a pre- 
excitation we locate membranes in 

t-t 1-4 t-7 1-4 

Fig.1 

the lower and upper walls of the working chamber, strictly 
, the free surfaces rlj being located 

above the rigid part of the lower wall (Fig.1). 
We know that, at small non-zero displacements of the 

membranes, only the vertical component of the sag w,, which, 
in the domain r,, formed by the undeformed mean surface of 
the n-th membrane and the bounded piecewise smooth closed 
curve Y,,, satisfies the equations /2/ 

(DV’ - c&d)w,, = p,, - p, n = 1, . . ., N 

(DV4 - 02@)w, = p - p,,, n = N + 1, . . ., 2N 

V4 = (tP/cW + P/3ya)z, D = ZW/[12 (l-v’)] 

(1.4) 

where N is the number of membranes on the lower (upper) wall of the working chamber, and 
6, p, E, v are the membrane thickness, the density, the modulus of elasticity, and Poisson's 
ratio of the membrane material respectively. The time factor edi@' is omitted. 

The boundary condition on the curves y,, can be written as 

W, = 0, Yn = 0 on Yn (1.5) 

where pn is the bending moment in the direction of the normal. 
We shall further assume that domains r,(n = 2,...,N), are, with z = 0, translations 

of the domain rl by n steps of length 1 along the y axis, whiledomain r, (n = N + 2, . . ., ZN), 
with z=L,, are translations of the domain rNfl by n steps of length 1 along they axis. 

2. Let V*(s, y, z)ecfu*, a*(x, y, z)e-‘mf be the pre-assigned velocity and accelerationfields 
of the oscillatory fluid flow inside the chamber, which are realized by the sags w,* of the 
membranes and satisfy the conditions 

I vz (5, Y, 2) I > v*, I uz* (x, Y, z) I > A*; (5, y, z) ED* c D, (2.1) 

Here, D* is the uniton of cylinders D* = lJ,D,* with bases rn*, which are subdomains 
of r, of the upper and lower membranes, and V* and A* are constants. 

We pose the following problem: it is required to choose the coordinates of the centres 
of the sources, the number of them, and the volume deliveries Qnm, in such a way that the 
distribution field of the velocity V,. in domain D, satisfies the condition 

max I Vz (2, Y, 4 - V,* (z, Y, 4 I Q E, (3, Y, z) ED* (2.2) 
% (I. L 

This problem is an example of an inverse problem of oscillatory flow of fluid in a 
bounded volume. The general theory of such problems is treated in /3/. 

Let 'p* (5, y,z) be the potential of the velocity V* (x, y,z), and G the Neumann function 
for the domain DO. Using Green's formula and the matching conditions on the membranes r,, 
we obtain the following expression for the potential 'p* in terms of the sags w,* 

cp * = -iwz* + iwJ* 

Z*=i 1 w,*Gds- =i i w,*Gds, J* = i 5 Z,+G ds 
n==l rn n-N+1 r,, j=o r,j 

(2.3) 

Since the conditions --iow,* = V$ hold on membranes r,,n = 1,...,2N, the sags w,* 

will be assumed to be known, and the potential 'p* is given by 

‘P*= 5 1 V:,,Gds-- 
n=I r, 

V:,,Gds + ioJ* 

The deviation ZJ* of the free surface can then be assumed to be given, or zj* can be 
found from the system of integral equations 

Z,* + mggslJ* = o*g-lZ*, j = 0, 1 (2.4) 

If vbh,l is the solving kernel of system (2.4), we can writethedeviation Z,* of 
the free surface as 
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1 

Z,* = - dg-2 r, 1 RijI* ds + dg-‘Z* (2.5) 
i=o Tli 

Let G, be the Neumann function for the domain D,rthe flow velocity potential qn in the 
domain D,will be calculated from the expression 

where the upper sign is taken for n=i,..., N, and the lower one for n=N+1,..., 2N. 
We find the potential cp, excited by the sags w,, from an expression similar to (2.3), 

in which the w,,' are replaced by uj,. On substituting into system (1.4) the values of the 
pressure, found from (2.3) and (2.6), we obtain the system of integrodifferential relations 
connecting the membrane sags and the deviations Z, of the free surfaces with deliveries Q,,: 

(DV4 - 02p6)wk T o*p, [J - ZI + 02psIk = (2.7) 

2, + dg-’ (J - I) = 0, j = 0, 1 

<k = 0, k = 1, . . ..N. ck = L,, k = N + I,...., 2N 
J = J*, I = I* for w = w*, .z = z* 

(the upper sign is taken for k = 1, . . ..N. and the lower one for k = N + I,..., 2N). If the 
deliveries are known, (2.7) is a system of integrodifferential and integral equations for 
finding the sags wk and the deviations 2,. In our present problem, however, thedeliveriesQkm 
are unknown, and have to be found. 

We require that the unknown sags wk should be equal to the sags wk*; then it follows 
from the last equations of system (2.7) for j = 0,1, and from system (2.4), that Z/* = Zj, 

while the flow potential cp is equal to the pre-assigned potential cp*/4/. We substitute the 
values w,* instead of w, into system (2.7). We can then interpret (2.7) as an approximation 
of the known function on the left-hand side of (2.7) by a sequence of known functions 

",k,_'iF~ qk) = Gk (tkr qk, ckt &m dmt cm, 

, . . . , Mk 

with unknown coefficients Q%,,,. Since the system of functions G,, is linearly independent 
on Pk /5/, the problem is solvable and the coefficients of the best approximation of Qkm 
are given by 

bxq = T CO-‘&’ eXp (- iek) \ Gk, [(DV’ - O&6) WI* T 
‘k 

6J*p, (J* - Z*) + dpzZ*k] d.S 

(the upper sign is taken for k = 1, . . ..N. and the lower one for k=N+i,..., 2N). 
Let B denote the operator given by the integkodifferential expression on the left-hand 

side of system (2.7) with k = 1, , ..,2N, in which the Z, are given by (2.5), which is 
specified in the set of sufficiently smooth functions which satisfy boundary conditions (1.5). 
The number Mk of sources is found from 

where w., is the sag realized by the given distribution of sources with deliveries Qrm. Assume 
that the parameter o is not a natural frequency of oscillation of the membrane-fluid system. 
We then have the estimate 11 we - w*II <e,ll B]]-’ = e. In order to satisfy condition (2.1), we 
need to know the distribution of the vertical component of the velocity field of our solution 
with respect to the z coordinate. 

3. As an example, consider the excitation of a given fluid velocity and acceleration 
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field in the domain D,, = (0 <z<L, 0< y<6L, O<z<L/2) for an eight-membrane chamber with 
membranes measuring L XL with thickness 6, located one abovetheother on the lower and 

upper walls, and loaded and unloaded by compartments measuring L x L, located on the upper 
wall. 

To find the class of functions V*(z, y,a) and a* (r,Y,z),. for which the problem of the 
excitation of a given field satisfying conditions (2.1) has a solution, we define the structure 
of the field in terms of the membrane sags w,,. In other words, we first solve the direct 
problem, when the parameter M,, = 1 in Eq.(1.2), i.e., there is one source with delivery Q, = 

Q and Ei,,, = L/2, &, = L/2 + nL, &, = -h, n = 1, . . ., 4, cz,,, = L/2 + h, n = 5, . . ., 8. The boundary 
conditions (1.5) can be written for this case as 

w, = @w,/f3x? = 0 for 5 = 0, L 

w, = @w,l~y2 = 0 for y = nL, (n + l)L for n = 1, . . ., 4 

y=(n-4)L, (n-3)L for n=5,..., 8 

(3.1) 

In system (2.7) we make the change of variables x1 = xlL, y, = ylL, z1 = zlL, and 
introduce the notation w,, = w,,l6, 2~11 = Zjl6, G’ = LG, G,’ = LG,,, K’ = L402p61D. For simpliE:ty, 
the index unity will henceforth be omitted. 

We shall seek the solution of system (2.7) of integrodifferential equations by the 
Bubnov-Galerkin method. In view of boundary conditions (3.11, the sags of the lower and upper 
membranes may be written as 

NV& 
w, = X A&sin nqE sinnmq, 

9, VII=1 
(3.2) 

(qn=q--nforn=l,. . ., 4, tjn = 7j - (n - 4) for n = 
5 1 . . ., 8) 

and the deviation of the free surface may be written as /6/ 

N 

Z,= 3 &71COSnp~C0Snm~],, qj=q-5j, j=(),i 
9, rn=l 

(3.3) 

We substitute (3.2) and (3.3) into system (2.7). From the orthogonality conditions we 
obtain a system of algebraic equations for the coefficients Ap”m and c$, which has a 
solution at least in the case of low-frequency excitation. 

Consider the case when o< ol_ Let the main contribution to the velocity field dis- 

tribution be from the first harmonic of the sag w,. 1n this case we can find the amplitude AlIn 
from the condition for the interior Neumann problem to be solvable for domain D,: 

AlIn = Anu A 11 9 Iln = irc'exp (i8,) Q.[4wL26]-I, n = 1, . . ., 4 

CII1 = 0, j = 0,l 

The first natural frequency of fluid oscillation in domain Do is given by the Bubnov- 
Galerkin method by the relation 

% pzq-g 
0 1 2 3 

Fig.2 

n. In=0 

z Pm + 1) 
I2 co9 v [(Zn + 1)’ - 4]-’ [ 1 - (2m + 1/s)*]-* x 

sinPnq [(Zn + 1)2 + (2m + ‘/s)a]-“* th[+ [(Zn + 1)z + 

(2m + ‘/#]‘/z} }-“’ 

The velocity field potential is found from (2.2), 
(2.31, in which we put m, q = 1 : 
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[(12r1)~ + m2[-'/*ch [+{~,a +(G)")"'] 

60, = 1, 60, = 0 

The symbol z* means that the term of the sum with m=6 is zero. 
The rate of oscillatory flow is given for the first case of excitation with ok = 0 and 

for the second case with 0% = n(k i- 1) by the relations 

V 
& 32 -* 

lWhA,l =*lZ=m iz (- 1)“cos 2nnz cos y x 
7%. m-o 

Cos~~{(l+‘GOR)(l+60m)(4n~--1)~l-(~)e])X 

cos+h~! [nz +(+)']"'}#[+(,a+ (?)4"'] 

the term of the sum with m = 3 being zero 

V + a -* 
W5A,l 

= us1 = J-&- E (- 1)” co9 2nns cos n (2m + 1) + x 
n, rn=O 

nGm+t) sin7 [(I +6,,)(4d- 1)(1-- [VI”}]-’ X 

ch ~~[~P+(~)2]"']~h-l{~[n9+(~)1]"'] 

The results of calculating the distribution of the vertical velocity V, in domain Do are 
shown in Fig.2,a for the first case of excitation, and in Fig.Z,b for the second case (by the 

symmetry, only for the set of values (0 < 5 < liar 0 Q y < 3, 0 < z < l/d}). The continuous line 
is the distribution of the vertical velocity component distribution for z = 0, and the broken 
line, for z ='I,. 

The distribution field is characterized by the following properties. The velocity Vz(&, 
%9 z = Oh (fk. qk) E rk is the same, apart from a constant, as the sag. As z increases, the 
maximum value 1 V, (1/a, k + ‘I,, O)I d ecreases to 1 V, (l/%, k + 1/1, 114)1, while on the membrane boundary 
it increases from zero to the value I V,&,qkT1/J 1, where ikr qk E Yk. For every point 
(Ek> qk) = l-k the minimum with respect to z of velocity Vz is equal to 

vz* = min [I vz (gk7 qkr 0) I , I vz (Sk? qk? ‘IdI] 

For analytic studies the following approximation is useful: 

V,* = aV, (5, y, 0), a = mink I V, (‘I,, k f 1/a, l/p)/(aA)j 

For convex sags W,,, symmetric about the membrane centre, the distribution field of the 
velocity vertical projection behaves in the same way as in the above case of one-mode sag. 
Since V,* is known as a function of the sag,theproblem of constructing a given velocity field 
that satisfies conditions (2.1), reduces to the problem of constructing a given membrane sag 

Wk * such that, in the domain rk, 

1 wk* 1 > V*/(&t) (3.4) 
To be specific, let us consider the problem of forming the sag W, of the lower membranes. 

Put 

Q$,, = iop,exp (i&JLSD-‘ti-‘Qk, 

fk* = (V‘ - K’) wk* - plLK+-‘G-’ [J* - Z+] + p,LK’p-WZk*, 
Ik*=Zk for wk*=wc 

We substitute into the k-th equation of system (2.7), k = 1,...,4, the value 

which satisfies condition (3.4) with (fk:%) E l-k* and the deviation Z,* of the free surface, 
as given by (2.5). As a result, we have 

~!&$n& (fr, qk, 0, %a, dnu - hL-l) =fk*t k-1, . . ..N (3.5) 

For the approximation of the function fk* we can use (2.8). 
Consider the special case when an extra condition is imposed on the amplitude of the sag 
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.,zl I(- I)” - 11 I(- l),J - 11 A,, ln’(n’ + q’)’ - 

K’ (1 + p&p-W’)] q-w = 0 

(3.6) 

The approximation problem (3.5) can then best be solved by comparing the Fourier coef- 
ficients of the left-hand and right-hand sides with respect to the system of functions 

cos rc& co9 nnqk; 0 Qr, n Q R - 1, ra + n* + 0, Mk = R* 

We obtain 

a,, = - n (9 + n*p sh [nh (9 + ?a’)‘/. L-11 x 

S fk* cos nrbk cos nnqk ds 
rk 

We add to system (3.7) the equation obtained from the solvability condition for 
interior Neumann problem in domain & and conditions (3.6) 

&:.=dool a,=&+-11 x 

[(- I)9 - l] A,, [n’(G 1 q’)’ - K’] q-‘n:‘JP 

We choose the source coordinates &,,,&, in such a way that we have 

bOlk =$s+n= . . . = E~*RwI~+I, = l/(R + l), . . . 
&=&= . ..-&*=R/(R+l) 

%lk = . . . = & = l/(R + l), &(it(z+~)+~, = . . . 

= &R = RXR + 1) 

(3.7) 

the 

(3.8) 

i.e., the source centres form a square mesh on the lower wall of domain Dr. In this case the 
determinant of system (3.71, (3.8) is the Kronecker product of Van der Monde determinants. 
We write the solution by using Cramer's rule 

(Ad is the determinant obtained by replacing the m-th column of AL by the right-hand side 
d,,, = (A,,, a,,, . . ., 4x-1.m . . ., &-~,R-J~J - The number of sources Mk = R’ is found from the 
condition 

In the linear statement, the acceleration of the oscillatory flow is given by a = -ioov, 
so that the construction of a given acceleration field is similar to the construction of a 
given velocity field. 

4. Consider the case of resonant excitation of the flow, assuming that the fluid in the 
working chamber and in the compartments behind the membranes is ideal, and that energy is 
dissipated only in the membrane material. While remaining within the theory of small sags, 
we introduce into the integrodifferential equations of membrane motion and the motion of the 
free surfaces, in accordance with /7/, the supplementary term 

(4.1) 

s 8ow; 
Pls,*+Pl G,gp- dr+tDO(tp,*), II = i,...,2N 

r7l 
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In (4.1), the upper sign is taken for n= 1, . . ..N. and the lower one for n = Ni- i..., 

i-9 while the functional @((w-l) characterizes the hysteresis-type energy dissipation in the 
membrane material. The function 0 is determined experimentally. It is assumed that the 
disturbing force is small, i.e., the deliveries Qknl must have the order Q~,,,-e.4knl, Ldkns= O(1) 

as e-0. The energy loss in the membrane material leads to a phase shift of the membrane 
oscillations, and hence to a phase shift of the oscillations of the fluid filling the working 
chamber. 

We seek the solution of system (4.1) as 

wn* = uw,(z, II) COB c + eu, (2. #, 'I) + . . ., z,* = UZj(Z, y)cos T 
o'=o,*+~A,+...,~=9~+sJl~+...,r=0:+~ 

,(4.2) 

For clarity, we take the resonant frequency o1 calculated in Sect.3. We require that 
the functions Ul, ... I do not contain the principal harmonics co8 r and sinr. Substituting 
expansion (4.2) into system (4.1) and comparing like powers of a, we obtain the system of 
equations for en Al, and $,: 

(DG' - o,~ps) w. = fp& (I - J) -t ~nw&, a = 1, . . ., 2~’ (4.3) 
Z, = opgl[l - J], j = I,2 

(4.4) 

System (4.3) is the same as the homogeneous system (2.7), so that o1 can be regarded as 
the first natural frequency of system (2.7). 

We use the method of harmonic balance to find the unknowns A1 and qO. For this, we 
multiply Eqs.(4.4) by w,coer and w, ein r, and integrate over the membrane surface during 
the complete time cycle. After transformations, we obtain the system 

M 

ss 
eDO(u,w,,r) wnsinTdrds (4.5) 

r.. 0 

In (4.5) we take as w,, the eigenfunction corresponding to the eigenvalue 01. Solving 
system (4.5) simultaneously and usingtheknown expression for @((u,w,,z), we can plot the 
resonance curve U = f(w). To refine the sag, we find the function y1 from (4.4). After find- 
ing the w,,the velocity field is calculated from (2.3). 
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AN ANALYTICAL SOLUTION OF THE PROBLEM OF CONVECTIVE DIFFUSION IN THE 
NEIGHBOURHOOD OF A DISCONTINUITY OF THE CATALYTIC PROPERTIES OF A SURFACE* 

I.G, BRYKINA 

The problem of convective diffusion when a binary mixture flaws round a 
plate when there is a line of discontinuity of the catalytic properties 
on the plate is considered. The effect of longitudinal diffusion is 
taken into account. The surface is assumed to be non-catalytic up to the 
discontinuity but possesses a finite catalytic activity after the discon- 
tinuity. At fow values of the coefficient of catalytic activity, an 
analytic solution of the problem is obtained by the application of a 
Fourier transform. The asymptotic forms of the solution are found in the 
form of simple formulae both near the remote from the point of disoonti- 
nuity of the boundary conditions and both upstream and downstream. A 
comparison is made with the solutions obtained in the boundary layer 
approximation and by a numerical method il./. 

The problem of convective diffusion (or thermal conductivity) in the 
case of a transition from a not-catalytic surface onto an ideally cata1y.ti.c 
surface has been solved /2, 3/ by the Wiener-Hopf method. 

1. The stationary flaw of a two component incompressible liquid ox gas with constant dif- 
fusion properties and a linear velocity profile (u'= Y,Y$', U* = 0) in the 2' directionaround 
an infinite plate y'=8, on the surface of which a heterogeneous first-order reaction occurs. 
is considered. The surface is assumed to be non-catalytic in the half-plane #* = 8, s'<O 
and to possess a finite catalytic activity in the half plane y'=O, x’>O. 

The diffusion equation (which is idlentical in form to the heat conduction equation) and 
the boundary conditions in this case have the form 

Here k' is the rate constant for the heterogeneous r~~~ination~ntb~ surface, and the 
dimensionless variables .r ana 9 are related to the dimensional variables in the following 
manner: 

(0 is the coefficient of diffusion and c is the concentration). 
Let us consider the case when k<l. A solution of the problem can then be sought in 

the form 
c = cg (z - kf + . ..) * v.31 

For the function f(s,P) we obtain en equation , which is identical to (1.11, while the 
boundary conditions take the form 
l Prikl.Mabm.Mekhan.,52,2,244-251,1988 


