EXCITATION OF LOW-FREQUENCY FIELDS IN A MULTIMEMBRANE CHAMBER*

V.P. IVANOV

Abstract

The problem of the excitation of a given field of ideal fluid velocities and accelerations is considered, when the fluid fills a chamber which is small compared with the wavelength. An oscillatory flow is excited by flexible membranes in the chamber walls. The membrane oscillations are realized by the periodic injection and drainage of fluid into and from compartments behind the membranes. Low-frequency excitation of a liquid phase medium in a space whose linear dimensions are less than the excitation wavelength is used for a variety of technological processes /1/. It is then important to ensure, not only given energy characteristics of the oscillatory flow, but also a pre-assigned distribution of the field of fluid velocities and accelerations.

1. A rectangular chamber $D_{0}=\left\{x, y, z: 0<x<L_{1}, 0<y<L_{2}, 0<z<L_{3}\right\}$ is filled with an ideal fluid of density ρ_{1}. On the chamber walls there are hatches for loading and unloading, which are interpreted as free fluid surfaces, and where membranes are mounted. Into the spaces $D_{n}(n=1, \ldots, 2 N)$ behind the membranes, ideal fluid of density ρ_{2} is periodically injected and removed, with period $2 \pi / \omega$, where ω is the angular frequency. The variable pressure of the periodic fluid flow in domains D_{n} excites oscillations of the membranes. These oscillations are transformed into periodic oscillatory flow of the fluid in domain D_{0}. It is assumed that $\omega L c^{-1} \& 1$, where L is the characteristic dimension of the chamber, c is the velocity of sound in a fluid of density ρ_{1}, and $v c_{1}^{-1} \leqslant 1$, where v and c_{1} are the fluid velocity modulus and the velocity of sound in the fluid in the compartments D_{n} behind the membranes.

The potential φ of the velocity field in domain D_{0} is the solution of the following problem:

$$
\begin{equation*}
\Delta \varphi=0 ; \partial \varphi / \partial n=0 \text { on } \Gamma \tag{1.1}
\end{equation*}
$$

Here $\partial / \partial n$ is the derivative with respect to the outward normal, Γ is the part of the boundary of D_{0} formed by the rigid walls, $\partial \varphi / \partial z=-i \omega Z_{j}, Z_{j}=i \omega g^{-1} \varphi$ on the free surfaces $\Gamma_{1 j}=\left\{x, y, z: 0<x<L_{1}, \quad l_{1 j}<y<l_{2 j}, j=0,1, l_{10}=0, l_{21}=L_{2}, z=L_{3}\right\}$, where Z_{j} is the deviation of the free surface from the equilibrium position, $\partial \omega / \partial n=-i \omega w_{n}, p_{n}=-q_{n}$ on the mean surface of the n-th membrane, q_{n} is the load on the mean surface of a membrane, w_{n} is the normal component of the sag of the n-th membrane, and p is the pressure on the mean surface from the fluid of density ρ_{1}.

In the compartments D_{n} the flow velocity potentials φ_{n} satisfy Poisson's equation

$$
\begin{align*}
& \Delta \varphi_{n}=\sum_{m=1}^{M_{n}} Q_{n m} e^{i \theta_{n} \delta\left(x-\sum_{0 m}^{n}, \quad y-\eta_{0 m}^{n}, z-\zeta_{0 m}^{n}\right) e^{-i \omega t}} \tag{1.2}\\
& n=1, \ldots, 2 N
\end{align*}
$$

where $\left(\xi_{0 m}^{n}, \eta_{0 m}^{n}, \zeta_{0 m}^{n}\right)$ are the coordinates of the sources with deliveries $Q_{n m}$. and delay phases $\theta_{n}, \delta(x)$ is the delta function, and t is time, which is a parameter of the problem. On the rigid walls we have the no-flow condition, and on the membranes, the matching condition $\partial \varphi_{n} / \partial n=-i \omega w_{n}, \quad p_{n}=-q_{n}^{1}$, where p_{n} and q_{n}^{1} are the pressure and load on the mean membrane surface from the second fluid.

The pressure in domains D_{0} and $D_{n}(n=1, \ldots, 2 N)$, is found from the linearized equations of motion

$$
\begin{align*}
& p-p_{0}-\rho_{1} g\left(L_{3}-z\right)=i \omega \rho_{1} \varphi(x, y, z) e^{-i \omega t} \tag{1.3}\\
& p_{n}-p_{n 0}-\rho_{2} g\left(L_{n}-z\right)=i \omega \rho_{2} \varphi_{n}(x, y, z) e^{-i \omega t}, L_{n}=\max _{(x, y, z) \in D_{n}} z
\end{align*}
$$

($p_{0}, p_{n 0}$ are the pressures in the working chamber and the n-th compartment at zero sag of the membrane and g is the vertical component of the acceleration due to gravity).

Fig.l

We consider the problem of the excitation in a subdomain of D_{0}. of an oscillatory flow with given vertical velocity and acceleration, with modulus not less than a preassigned amount. For the excitation we locate membranes in the lower and upper walls of the working chamber, strictly one below the other, the free surfaces $\Gamma_{1 j}$ being located above the rigid part of the lower wall (Fig.l).

We know that, at small non-zero displacements of the membranes, only the vertical component of the sag w_{n}, which, in the domain Γ_{n}, formed by the undeformed mean surface of the n-th membrane and the bounded piecewise smooth closed curve γ_{n}, satisfies the equations $/ 2 /$

$$
\begin{align*}
& \left(D \nabla^{4}-\omega^{2} \rho \delta\right) w_{n}=p_{n}-p, \quad n=1, \ldots, N \tag{1.4}\\
& \left(D \nabla^{4}-\omega^{2} \rho \delta\right) w_{n}=p-p_{n}, \quad n=N+1, \ldots, 2 N \\
& \nabla^{4}=\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right)^{2}, \quad D=E \delta^{3} /\left[12\left(1-v^{2}\right)\right]
\end{align*}
$$

where N is the number of membranes on the lower (upper) wall of the working chamber, and δ, ρ, E, v are the membrane thickness, the density, the modulus of elasticity, and Poisson's ratio of the membrane material respectively. The time factor $e^{-i \omega t}$ is omitted.

The boundary condition on the curves γ_{n} can be written as

$$
\begin{equation*}
w_{n}=0, \mu_{n}=0 \text { on } \gamma_{n} \tag{1.5}
\end{equation*}
$$

where μ_{n} is the bending moment in the direction of the normal.
We shall further assume that domains $\quad \Gamma_{n}(n=2, \ldots, N)$, are, with $z=0$, translations of the domain Γ_{1} by n steps of length l along the y axis, while domain $\Gamma_{n}(n=N+2, \ldots, 2 N)$, with $z=L_{3}$, are translations of the domain Γ_{N+1} by n steps of length l along the y axis.
2. Let $\mathbf{V}^{*}(x, y, z) e^{-i \omega t}, a^{*}(x, y, z) e^{-\omega t}$ be the pre-assigned velocity and acceleration fields of the oscillatory fluid flow inside the chamber, which are realized by the sags $w_{n}{ }^{*}$ of the membranes and satisfy the conditions

$$
\begin{equation*}
\left|V_{z}(x, y, z)\right| \geqslant V^{*},\left|a_{z}^{*}(x, y, z)\right| \geqslant A^{*} ;(x, y, z) \in D^{*} \subset D_{0} \tag{2.1}
\end{equation*}
$$

Here, D^{*} is the uniton of cylinders $D^{*}=U_{n} D_{n}^{*}$ with bases $\Gamma_{n}{ }^{*}$, which are subdomains of Γ_{n} of the upper and lower membranes, and V^{*} and A^{*} are constants.

We pose the following problem: it is required to choose the coordinates of the centres of the sources, the number of them, and the volume deliveries $Q_{n m}$, in such a way that the distribution field of the velocity $V_{2 \text { : }}$ in domain D_{0} satisfies the condition

$$
\begin{equation*}
\max _{x, y, z}\left|V_{z}(x, y, z)-V_{z}^{*}(x, y, z)\right| \leqslant \varepsilon, \quad(x, y, z) \leftleftarrows D^{*} \tag{2.2}
\end{equation*}
$$

This problem is an example of an inverse problem of oscillatory flow of fluid in a bounded volume. The general theory of such problems is treated in $/ 3 /$.

Let $\varphi^{*}(x, y, z)$ be the potential of the velocity $V^{*}(x, y, z)$, and G the Neumann function for the domain D_{0}. Using Green's formula and the matching conditions on the membranes Γ_{n}, we obtain the following expression for the potential φ^{*} in terms of the sags $w_{n}{ }^{*}$

$$
\begin{align*}
& \varphi^{*}=-i \omega I^{*}+i \omega J^{*} \tag{2.3}\\
& I^{*}=\sum_{n=1}^{N} \int_{\Gamma_{n}} w_{n}^{*} G d s-\sum_{n-N+1}^{2 V} \int_{\Gamma_{n}} w_{n}^{*} G d s, \quad J^{*}=\sum_{j=0}^{1} \int_{\Gamma_{i j}} Z_{j}^{*} G d s
\end{align*}
$$

Since the conditions $-i \omega w_{n}^{*}=V_{2 n}^{*}$ hold on membranes $\Gamma_{n} n=1, \ldots, 2 N$, the sags $w_{n}{ }^{*}$ will be assumed to be known, and the potential φ^{*} is given by

$$
\varphi^{*}=\sum_{n=1}^{N} \int_{\Gamma_{n}} V_{z n}^{*} G d s-\sum_{n=N+1}^{2 N} \int_{\Gamma_{n}} V_{2 n}^{*} G d s+i \omega J^{*}
$$

The deviation $\boldsymbol{Z}_{j}{ }^{*}$ of the free surface can then be assumed to be given, or $\boldsymbol{Z}_{j}{ }^{*}$ can be found from the system of integral equations

$$
\begin{equation*}
Z_{j}{ }^{*}+\omega^{2} g^{-1} J^{*}=\omega^{2} g^{-1} I^{*}, j=0,1 \tag{2.4}
\end{equation*}
$$

If $\left\{R_{i j}\right\}_{i, j}$ is the solving kernel of system (2.4), we can write the deviation $Z_{j}{ }^{*}$ of the free surface as

$$
\begin{equation*}
Z_{j}^{*}=-\omega^{4} g^{-2} \sum_{i=0}^{1} \int_{\Gamma_{1 i}} R_{i j} I^{*} d s+\omega^{2} g^{-1} I^{*} \tag{2.5}
\end{equation*}
$$

Let G_{n} be the Neumann function for the domain D_{n} the flow velocity potential φ_{n} in the domain D_{n} will be calculated from the expression

$$
\begin{align*}
& \varphi_{n}(x, y, z)=\sum_{m=1}^{M_{n}} \exp \left(i \theta_{n}\right) Q_{n m} G_{n}\left(x, y, z, \xi_{0 m}^{n}, \eta_{0 m}^{n}, \zeta_{0 m}^{n}\right) \pm \tag{2.6}\\
& i \omega I_{n}, \quad I_{n}=\int_{\Gamma_{n}} w_{n} G_{n} d_{s}
\end{align*}
$$

where the upper sign is taken for $n=1, \ldots, N$, and the lower one for $n=N+1, \ldots, 2 N$.
We find the potential φ, excited by the sags w_{n}, from an expression similar to (2.3), in which the $w_{n}{ }^{*}$ are replaced by w_{n}. On substituting into system (1.4) the values of the pressure, found from (2.3) and (2.6), we obtain the system of integrodifferential relations connecting the membrane sags and the deviations Z_{j} of the free surfaces with deliveries $Q_{n m}$:

$$
\begin{align*}
& \left(D \nabla^{4}-\omega^{2} \rho \delta\right) \omega_{k} \mp \omega^{2} \rho_{1}[J-I]+\omega^{2} \rho_{2} I_{k}= \tag{2.7}\\
& \quad \pm i \omega \rho_{2} \exp \left(i \theta_{k}\right) \sum_{m=1}^{M_{k}} Q_{k m} G_{k}\left(\xi_{k}, \eta_{k}, \zeta_{k}, \xi_{0 m}^{k}, \eta_{0 m}^{k}, \zeta_{0 m}^{k}\right) \\
& Z_{j}+\omega^{2} g^{-1}(J-I)=0, j=0,1 \\
& \zeta_{k}=0, k=1, \ldots, N ; \zeta_{k}=L_{3}, k=N+1, \ldots, 2 N \\
& J=J^{*}, I=I^{*} \text { for } w=w^{*}, z=z^{*}
\end{align*}
$$

(the upper sign is taken for $k=1, \ldots, N$, and the lower one for $k=N+1, \ldots, 2 N$). If the deliveries are known, (2.7) is a system of integrodifferential and integral equations for finding the sags w_{k} and the deviations Z_{j}. In our present problem, however, the deliveries $Q_{k m}$ are unknown, and have to be found.

We require that the unknown sags w_{k} should be equal to the sags $w_{k}{ }^{*}$; then it follows from the last equations of system (2.7) for $j=0,1$, and from system (2.4), that $Z_{j}^{*}=Z_{j}$, while the flow potential φ is equal to the pre-assigned potential $\varphi^{*} / 4 /$. We substitute the values $w_{n}{ }^{*}$ instead of w_{n} into system (2.7). We can then interpret (2.7) as an approximation of the known function on the left-hand side of (2.7) by a sequence of known functions

$$
\begin{aligned}
& G_{k m}\left(\xi_{k}, \eta_{k}\right)=G_{k}\left(\xi_{k}, \eta_{k}, \zeta_{k}, \xi_{o m}^{k}, \eta_{o m}^{k}, \zeta_{o m}^{k}\right) \\
& m=1, \ldots, M_{k}
\end{aligned}
$$

with unknown coefficients $Q_{k m}$. Since the system of functions $G_{k m}$ is linearly independent on $\Gamma_{k} / 5 /$, the problem is solvable and the coefficients of the best approximation of $Q_{k m}$ are given by

$$
\begin{align*}
& \sum_{m=1}^{M_{k}} Q_{k m} \int_{\Gamma_{k}} G_{k m} G_{k q} d s=b_{k q}, \quad q=1, \ldots, M_{k} \tag{2.8}\\
& b_{k q}=\mp \omega^{-1} \rho_{\mathbf{z}}^{-1} \exp \left(-i \theta_{k}\right) \int_{\Gamma_{k}} G_{k q} I\left(D \nabla^{4}-\omega^{2} \rho \delta\right) w_{k}^{*} \mp \\
& \left.\quad \omega^{2} \rho_{1}\left(J^{*}-I^{*}\right)+\omega^{2} \rho_{2} I^{*}{ }_{k}\right] d s
\end{align*}
$$

(the upper sign is taken for $k=1, \ldots, N$, and the lower one for $k=N+1, \ldots, 2 N$).
Let B denote the operator given by the integrodifferential expression on the left-hand side of system (2.7) with $k=1, \ldots, 2 N$, in which the Z, are given by (2.5), which is specified in the set of sufficiently smooth functions which satisfy boundary conditions (1.5). The number M_{k} of sources is found from

$$
\left\|B w^{*}-\sum_{m=1}^{M_{k}} I \pm i \omega \rho_{2} \exp \left(i \theta_{k}\right) Q_{k m} G_{k m}\right\|\|\leqslant\| B\left\|\left\|w^{*}-w_{*}\right\|\right.
$$

where w_{*} is the sag realized by the given distribution of sources with deliveries $Q_{k m}$. Assume that the parameter ω is not a natural frequency of oscillation of the membrane-fluid system. We then have the estimate $\left\|w^{*}-w_{*}\right\| \leqslant \varepsilon_{1}\|B\|^{-1}=\varepsilon$. In order to satisfy condition (2.1), we need to know the distribution of the vertical component of the velocity field of our solution with respect to the z coordinate.
3. As an example, consider the excitation of a given fluid velocity and acceleration
field in the domain $D_{0}=\{0<x<L, 0<y<6 L, 0<z<L / 2\}$ for an eight-membrane chamber with membranes measuring $L \times L$ with thickness δ, located one above the other on the lower and upper walls, and loaded and unloaded by compartments measuring $L \times L$, located on the upper wall.

To find the class of functions $\mathbf{V}^{*}(x, y, z)$ and $\mathbf{a}^{*}(x, y, z)$, for which the problem of the excitation of a given field satisfying conditions (2.1) has a solution, we define the structure of the field in terms of the membrane sags w_{n}. In other words, we first solve the direct problem, when the parameter $M_{n}=1$ in Eq.(1.2), i.e., there is one source with delivery $Q_{n}=$ Q and $\xi_{0 m}^{n}=L / 2, \eta_{o m}^{n}=L / 2+n L, \zeta_{0 m}^{n}=-h, n=1, \ldots, 4, \zeta_{0 m}^{n}=L / 2+h, n=5, \ldots, 8$. The boundary conditions (1.5) can be written for this case as

$$
\begin{align*}
& w_{n}=\partial^{2} w_{n} / \partial x^{2}=0 \text { for } x=0, L \tag{3.1}\\
& w_{n}=\partial^{2} w_{n} / \partial y^{2}=0 \text { for } y=n L,(n+1) L \text { for } n-1, \ldots, 4 \\
& y=(n-4) L,(n-3) L \text { for } n=5, \ldots, 8
\end{align*}
$$

In system (2.7) we make the change of variables $x_{1}=x / L, y_{1}=y / L, z_{1}=z / L$, and we introduce the notation $w_{n 1}=w_{n} / \delta, Z_{j_{1}}=Z_{j} / \delta, G^{1}=L G, G_{n}{ }^{1}=L G_{n}, K^{4}=L^{4} \omega^{2} \rho \delta / D$. For simplicity, the index unity will henceforth be omitted.

We shall seek the solution of system (2.7) of integrodifferential equations by the Bubnov-Galerkin method. In view of boundary conditions (3.1), the sags of the lower and upper membranes may be written as

$$
\begin{align*}
& w_{n}=\sum_{q, m=1}^{N_{n}} A_{q m}^{n} \sin \pi q \xi \sin \pi m \eta_{n} \tag{3.2}\\
& \left(\eta_{n}=\eta-n \text { for } n=1, \ldots, 4, \eta_{n}=\eta-(n-4) \text { for } n=\right. \\
& \quad 5, \ldots, 8)
\end{align*}
$$

and the deviation of the free surface may be written as /6/

$$
\begin{equation*}
Z_{j}=\sum_{q, m=1}^{N} C_{q m}^{j} \cos \pi q \xi \cos \pi m \eta_{j}, \quad \eta_{j}=\eta-5 j, \quad j=0,1 \tag{3.3}
\end{equation*}
$$

We substitute (3.2) and (3.3) into system (2.7). From the orthogonality conditions we obtain a system of algebraic equations for the coefficients $\boldsymbol{A}_{q m}^{n}$ and $C_{q m}^{n}$, which has a solution at least in the case of low-frequency excitation.

Consider the case when $\omega<\omega_{1-}$ Let the main contribution to the velocity field distribution be from the first harmonic of the sag w_{n}. In this case we can find the amplitude $\boldsymbol{A}_{11}{ }^{n}$ from the condition for the interior Neumann problem to be solvable for domain D_{n} :

$$
\begin{aligned}
& A_{11}^{n}=A_{11}^{n+6}, A_{11}^{n}=i \pi^{2} \exp \left(i \theta_{n}\right) Q \cdot\left[4 \omega L^{2} \delta\right]^{-1}, n=1, \ldots, 4 \\
& C_{11}^{j}=0, j=0,1
\end{aligned}
$$

The first natural frequency of fluid oscillation in domain D_{0} is given by the BubnovGalerkin method by the relation

Fig. 2

$$
\begin{aligned}
\omega_{1} & =\frac{2 \pi^{2}}{L^{2}}\left(\frac{D}{\rho^{\delta}}\right)^{1 / 4}\left\{1-\frac{16^{3} \rho_{1} L}{\pi^{2} \rho^{\delta}} \sum_{n, m=0}^{\infty}(2 n+1)^{2}(-1)^{m} \cos ^{2} \times\right. \\
& \frac{\pi(2 m+1)}{12} \cos \frac{\pi(2 m+1)}{4}\left[(2 n+1)^{2}-4\right]^{-2}\left[1-(2 m+1 / 6)^{2}\right]^{-1} \times \\
& \sin ^{2} \frac{\pi(2 m+1)}{6}\left[(2 n+1)^{2}+(2 m+1 / 8)^{2}\right]^{-1 / 6} \operatorname{th}\left\{\frac { \pi } { 4 } \left[(2 n+1)^{2}+\right.\right. \\
& \left.\left.\left.\left.(2 m+1 / 6)^{2}\right]^{1 / 2}\right\}\right\}\right\}^{-1 / 2}
\end{aligned}
$$

The velocity field potential is found from (2.2), (2.3), in which we put $m, q=1$:

$$
\begin{aligned}
& \varphi(x, y, z)=-\frac{16 i \omega L \delta}{\pi^{3}} \sum_{a=1}^{4} A_{11}{ }^{q} \sum_{n \cdot m=0}^{\infty} \cos 2 \pi n x \cos \frac{\pi m y}{6} \times \\
& \quad \cos \frac{\pi m(2 q+1)}{12}\left\{\left(1+\delta_{0 n}\right)\left(1+\delta_{o m}\right)\left(4 n^{2}-1\right)\left[1-\left(\frac{m}{6}\right)^{2}\right]\right\}^{-1} \times \\
& \cos \frac{\pi m}{12} \operatorname{sh}\left[\frac{\pi(1-4 z)}{2}\left\{n^{2}+\left(\frac{m}{12}\right)^{2}\right\}^{1 / 2}\right] \times
\end{aligned}
$$

$$
\begin{aligned}
& \quad\left[(12 n)^{2}+m^{2}\left[-^{-1 / 2} \operatorname{ch}\left[\frac{\pi}{2}\left\{n^{2}+\left(\frac{m}{12}\right)^{2}\right\}^{1 / 2}\right]\right.\right. \\
& \delta_{00}=1, \delta_{0 n}=0
\end{aligned}
$$

The symbol Σ^{*} means that the term of the sum with $m=6$ is zero.
The rate of oscillatory flow is given for the first case of excitation with $\theta_{k}=0$ and for the second case with $\theta_{\mathrm{k}}=\pi(k+1)$ by the relations

$$
\begin{aligned}
& \frac{V_{1 z}}{i \omega \delta A_{1 \mathrm{l}}}=v_{1 z}=\frac{32}{3 \pi^{2}} \sum_{n, m=0}^{\infty}(-1)^{m} \cos 2 \pi n x \cos \frac{\pi m y}{3} \times \\
& \cos ^{2} \frac{\pi m}{6}\left\{\left(1+\delta_{0 n}\right)\left(1+\delta_{0 m}\right)\left(4 n^{2}-1\right)\left[1-\left(\frac{m}{3}\right)^{2}\right]\right\} \times \\
& \quad \cos \frac{\pi m}{3} \operatorname{ch}\left\{\frac{\pi(1-4 z)}{2}\left[n^{2}+\left(\frac{m}{6}\right)^{2}\right]^{1 / 2}\right\} \operatorname{ch}^{-1}\left[\frac{\pi}{2}\left\{n^{2}+\left(\frac{m}{6}\right)^{2}\right\}^{1 / 2}\right]
\end{aligned}
$$

the term of the sum with $m=3$ being zero

$$
\begin{aligned}
& \frac{V_{2 z}}{i \omega \delta A_{11}}=v_{2 z}=\frac{8}{3 \pi^{2}} \sum_{n, m=0}^{*}(-1)^{m} \cos 2 \pi n x \cos \pi(2 m+1) \frac{y}{6} \times \\
& \quad \sin \frac{\pi(2 m+1)}{3}\left[\left(1+\delta_{0 n}\right)\left(4 n^{2}-1\right)\left\{1-\left[\frac{2 m+1}{6}\right]^{2}\right\}\right]^{-1} \times \\
& \quad \operatorname{ch}\left\{\frac{\pi(1-4 z)}{2}\left[n^{2}+\left(\frac{2 m+1}{12}\right)^{2}\right]^{1 / 2}\right\} \operatorname{ch}^{-1}\left\{\frac{\pi}{2}\left[n^{2}+\left(\frac{2 m+1}{12}\right)^{2}\right]^{1 / 2}\right\}
\end{aligned}
$$

The results of calculating the distribution of the vertical velocity v_{z} in domain D_{0} are shown in Fig.2,a for the first case of excitation, and in Fig. $2, \mathrm{~b}$ for the second case (by the symmetry, only for the set of values $\{0 \leqslant x \leqslant 1 / \mathbf{2}, 0 \leqslant y \leqslant 3,0 \leqslant z \leqslant 1 / 4\}$). The continuous line is the distribution of the vertical velocity component distribution for $z=0$, and the broken line, for $z=1 / 4$.

The distribution field is characterized by the following properties. The velocity $V_{z}\left(\xi_{k}\right.$, $\left.\eta_{k}, z-0\right),\left(\xi_{k}, \eta_{k}\right) \in \Gamma_{k}$ is the same, apart from a constant, as the sag. As z increases, the maximum value $\left|V_{z}(1 / 2, k+1 / 2,0)\right|$ decreases to $\left|V_{z}(1 / 2, k+1 / 2,1 / 4)\right|$, while on the membrane boundary it increases from zero to the value $\left|V_{z}\left(\xi_{k}, \eta_{k}, 1 / 4\right)\right|$, where $\xi_{k}, \eta_{k} \in \gamma_{k}$. For every point $\left(\xi_{k}, \eta_{k}\right) \in \Gamma_{k}$ the minimum with respect to z of velocity V_{z} is equal to

$$
V_{z}^{*}=\min \left[\left|V_{z}\left(\xi_{k}, \eta_{k}, 0\right)\right|,\left|V_{z}\left(\xi_{k}, \eta_{k}, 1 / 4\right)\right|\right]
$$

For analytic studies the following approximation is useful:

$$
V_{z}{ }^{*}=\alpha V_{z}(x, y, 0), \alpha=\min _{k}\left|V_{z}(1 / 2, k+1 / 2,1 / 4) /(\omega A)\right|
$$

For convex sags w_{n}, symmetric about the membrane centre, the distribution field of the velocity vertical projection behaves in the same way as in the above case of one-mode sag. Since V_{z}^{*} is known as a function of the sag, the problem of constructing a given velocity field that satisfies conditions (2.1), reduces to the problem of constructing a given membrane sag $w_{k}{ }^{*}$ such that, in the domain Γ_{k},

$$
\begin{equation*}
\left|w_{\mathrm{k}}^{*}\right| \geqslant V^{*} /(\omega \delta \alpha) \tag{3.4}
\end{equation*}
$$

To be specific, let us consider the problem of forming the sag w_{k} of the lower membranes. Put

$$
\begin{aligned}
& Q_{k m}^{*}=i \omega \rho_{2} \exp \left(i \theta_{k}\right) L^{3} D^{-1} \delta^{-1} Q_{k m} \\
& f_{k}^{*}=\left(\nabla^{4}-K^{4}\right) w_{k}^{*}-\rho_{1} L K^{4} \rho^{-1} \delta^{-1}\left[J^{*}-I^{*}\right]+\rho_{g} L K^{4} \rho^{-1} \delta^{-1} I_{k}^{*}, \\
& I_{\mathrm{k}}^{*}=I_{\mathrm{k}} \text { for } w_{\mathrm{k}}^{*}=w_{\mathrm{k}}^{*}
\end{aligned}
$$

We substitute into the k-th equation of system (2.7), $k=1, \ldots, 4$, the value

$$
w_{k}^{*}=\sum_{n, q}^{N_{k}} A_{n q}^{k} \sin \pi n \xi_{k} \sin \pi q \eta_{k}
$$

which satisfies condition (3.4) with $\left(\xi_{k}, \eta_{k}\right) \in \Gamma_{k}$, and the deviation Z_{j}^{*} of the free surface, as given by (2.5). As a result, we have

$$
\begin{equation*}
\sum_{m=1}^{M_{k}} Q_{k m}^{*} G_{k}\left(\xi_{k}, \eta_{k}, 0, \xi_{0 m}^{k}, \eta_{0 m}^{k},-h L^{-1}\right)=f_{k}^{*}, \quad k=1, \ldots, N \tag{3.5}
\end{equation*}
$$

For the approximation of the function f_{k}^{*} we can use (2.8).
Consider the special case when an extra condition is imposed on the amplitude of the sag
$w_{\mathrm{k}}{ }^{*}:$

$$
\begin{align*}
& \sum_{n, q=1}^{N_{k}}\left[(-1)^{n}-1\right]\left[(-1)^{q}-1\right] A_{n q}\left[\pi^{4}\left(n^{2}+q^{2}\right)^{2}-\right. \tag{3.6}\\
& \left.K^{2}\left(1+\rho_{2} L \rho^{-1} 8^{-1}\right)\right] q^{-1} h^{-q}=0
\end{align*}
$$

The approximation problem (3.5) can then best be solved by comparing the Fourier coefficients of the left-hand and right-hand sides with respect to the system of functions

$$
\cos \pi r \xi_{k} \cos \pi n \eta_{k} ; \quad 0 \leqslant r, \quad n \leqslant R-1, r^{2}+n^{2} \neq 0, M_{k}=R^{2}
$$

We obtain

$$
\begin{align*}
& \sum_{m=1}^{M_{k}} Q_{k m}^{*} \cos \pi r_{o m}^{k} \cos \pi n \eta_{o m}^{k}=d_{r n} \tag{3.7}\\
& d_{r n}=-\pi\left(r^{2}+n^{2}\right)^{2 / s} \operatorname{sh}\left[\pi h\left(r^{2}+n^{2}\right)^{1 / 2} L^{-1}\right] \times \\
& \int_{\Gamma_{k}} f_{k}^{*} \cos \pi r \xi_{k} \cos \pi n \eta_{k} d s
\end{align*}
$$

We add to system (3.7) the equation obtained from the solvability condition for the interior Neumann problem in domain D_{k} and conditions (3.6)

$$
\begin{align*}
& \sum_{m=1}^{M_{k}} Q_{k m}^{k}=d_{00}, \quad d_{00}=\sum_{n, q=1}^{N_{k}}\left[(-1)^{n}-1\right] \times \tag{3.8}\\
& {\left[(-1)^{q}-1\right] A_{n q}\left[\pi^{4}\left(n^{2}+q^{2}\right)^{2}-K^{4}\right] q^{-1} n^{-1} \cdot \pi^{-2}}
\end{align*}
$$

We choose the source coordinates $\xi_{0 m}^{k}, \eta_{0 m}^{k}$ in such a way that we have

$$
\begin{aligned}
& \xi_{01}^{k}=\xi_{0 k+1}^{k}=\ldots=\xi_{0[R(R-1)+1]}^{k}=1 /(R+1), \ldots \\
& \xi_{0 R}^{k}=\xi_{02 R}^{k}=\ldots=\xi_{0 R R}^{k}=R /(R+1) \\
& \eta_{01}^{k}=\ldots=\eta_{0 R}^{k}=1 /(R+1), \quad \eta_{0(R(R-1)+1]}^{k}=\cdots \\
& \quad=\eta_{0 R R}^{k}=R /(R+1)
\end{aligned}
$$

i.e., the source centres form a square mesh on the lower wall of domain D_{k}. In this case the determinant of system (3.7), (3.8) is the Kronecker product of van der Monde determinants. We write the solution by using Cramer's rule

$$
Q_{k m}^{k}=\frac{\Delta_{m}^{k}}{\Delta^{k}}, \quad \Delta^{k}=\left[4^{(R-1)} \prod_{1 \leqslant i<j \leqslant R} \sin \frac{i+i}{2(R+1)} \sin \frac{i-i}{2(R+i)}\right]^{2 R}
$$

($\Delta_{m}{ }^{\boldsymbol{k}}$ is the determinant obtained by replacing the m-th column of Δ^{k} by the right-hand side $d_{r n}=\left(d_{00}, d_{10}, \ldots, d_{R-1,0}, \ldots, d_{R-1, R-1}\right)^{T}$.). The number of sources $M_{k}=R^{2}$ is found from the condition

$$
\left|\sum_{r_{1}}^{\infty} \int_{n=R} f_{r_{k}} * \cos \pi r \xi_{k} \cos \pi n \eta_{k} d s\right| \leqslant \varepsilon_{1}
$$

In the linear statement, the acceleration of the oscillatory flow is given by $a=-i \infty \mathbf{V}$, so that the construction of a given acceleration field is similar to the construction of a given velocity field.
4. Consider the case of resonant excitation of the flow, assuming that the fluid in the working chamber and in the compartments behind the membranes is ideal, and that energy is dissipated only in the membrane material. While remaining within the theory of small sags, we introduce into the integrodifferential equations of membrane motion and the motion of the free surfaces, in accordance with /7/, the supplementary term

$$
\begin{gather*}
D \nabla \omega_{n}^{*}+\rho \delta \frac{\partial^{2} \omega_{n}^{*}}{\partial t^{2}}= \pm \rho_{s} \varepsilon \sum_{m=1}^{M_{n}} Q_{n m} G_{n}\left(\xi, \eta, \zeta_{n}, \xi_{0 m}^{n}, \eta_{0 m}^{n}, \zeta_{n}^{\varphi}\right) \omega \sin \omega t \pm \tag{4.1}\\
\rho_{1} Z_{i}^{*}+\rho_{2} \int_{\Gamma_{n}} G_{n} \frac{\partial^{\varepsilon} w_{n}^{*}}{\partial t^{2}} d s+\varepsilon D \Phi\left(w_{n}^{*}\right), \quad n=1, \ldots, 2 N
\end{gather*}
$$

$$
\begin{aligned}
z_{i}^{*} & =-g^{-1}\left[\sum_{q=1}^{N} \int_{\Gamma_{q}} G \frac{\partial^{2} w_{q}^{*}}{\partial t^{2}} \cdot d s-\right. \\
& \left.\sum_{q=N+1}^{2 N} \int_{\Gamma_{q}} c \frac{\partial^{2} w_{q}^{*}}{\partial t^{2}} d s \sum_{j=1}^{2} \int_{\Gamma_{1 j}} \frac{G \partial^{2} Z{ }_{j}^{*}}{\partial t^{2}} d s\right], \quad i=1,2
\end{aligned}
$$

In (4.1), the upper sign is taken for $n=1, \ldots, N$, and the lower one for $n=N+1 \ldots$, $2 N$, while the functional $\Phi\left(w_{n}{ }^{*}\right)$ characterizes the hysteresis-type energy dissipation in the membrane material. The function Φ is determined experimentally. It is assumed that the disturbing force is small, i.e., the deliveries $Q_{k m}$ must have the order $Q_{k m} \sim \varepsilon A_{k_{m}}, A_{k m}=O(1)$ as $\varepsilon \rightarrow 0$. The energy loss in the membrane material leads to a phase shift of the membrane oscillations, and hence to a phase shift of the oscillations of the fluid filling the working chamber.

We seek the solution of system (4.1) as

$$
\begin{align*}
& w_{n}^{*}=u w_{n}(x, y) \cos \tau+\varepsilon u_{1}(x, y, \tau)+\ldots, \quad Z_{j}{ }^{*}=u Z_{j}(x, y) \cos \tau \tag{4.2}\\
& \omega^{2}=\omega_{1}^{2}+\varepsilon \Delta_{1}+\ldots, \psi=\psi_{0}+\varepsilon \psi_{1}+\ldots, \tau=\omega t+\psi
\end{align*}
$$

For clarity, we take the resonant frequency ω_{1} calculated in Sect.3. We require that the functions u_{1}, \ldots, do not contain the principal harmonics $\cos \tau$ and $\sin \tau$. substituting expansion (4.2) into system (4.1) and comparing like powers of ε, we obtain the system of equations for ω_{1}, Δ_{1}, and ψ_{0} :

$$
\begin{align*}
& \left(D \nabla^{4}-\omega_{1}^{2} \rho \delta\right) w_{n}= \pm \rho_{2} \omega_{1}^{2}(I-J)+F_{2} \omega_{1} I_{n}, n=1, \ldots, 2 N \tag{4.3}\\
& Z_{j}=\omega^{2} g^{-1}[I-J], j=1,2 \\
& D \nabla^{4} u_{1}+\rho \delta\left[-u \Delta_{1} w_{n} \cos \tau+\omega_{1}^{2} \partial^{8} u_{1} / \partial \tau^{2}\right]= \tag{4.4}\\
& \pm \rho_{2} \sum_{m=1}^{M_{n}} Q_{n m} G_{n}\left(\xi, \eta, \zeta_{n}, \xi_{0 m}^{n}, \eta_{0 m}^{n}, \zeta_{0 m}^{n}\right) \sin \left(\tau-\psi_{0}\right)+ \\
& \begin{array}{l}
\rho_{2} \int_{D_{n}}\left[-u v_{n} \Delta_{1} \cos \tau+\omega_{1} \boldsymbol{v}^{2} \boldsymbol{z}_{u_{1}} / \partial \tau^{\varepsilon}\right] G_{n} d s+\varepsilon D \Phi\left(u, w_{n}, \tau\right) \\
\boldsymbol{e} \Phi\left(w_{n}{ }^{*}\right)=\boldsymbol{\varepsilon} \Phi\left(u, w_{n}, \tau\right)+\varepsilon^{2}, n=1, \ldots, N
\end{array}
\end{align*}
$$

System (4.3) is the same as the homogeneous system (2.7), so that ω_{1} can be regarded as the first natural frequency of system (2.7).

We use the method of harmonic balance to find the unknowns Δ_{1} and ψ_{0}. For this, we multiply Eqs.(4.4) by $w_{n} \cos \tau$ and $w_{n} \sin \tau$, and integrate over the membrane surface during the complete time cycle. After transformations, we obtain the system

$$
\begin{align*}
& \cos \psi_{0}=\frac{1}{S} \int_{\Gamma_{n}}^{2 \pi} \int_{0}^{2 \pi} e D \Phi\left(u, w_{n}, \tau\right) w_{n} \sin \tau d \tau d s \tag{4.5}\\
& \Delta=\left[S \sin \psi_{0}-\int_{\Gamma_{n}} \int_{0}^{2 \pi} e D \Phi\left(u, w_{n}, \tau\right) w_{n} \cos \tau d \tau d s\right]\left[\pi \rho \delta \int_{\Gamma_{n}} u w_{n}^{2} d s-\right. \\
& \left.\pi D \int_{\Gamma_{n}} w_{n} d s \int_{\Gamma_{n}} u \omega_{n} G_{n}\left(\xi, \eta, \zeta_{n}, \xi_{1}, \eta_{1}, \zeta_{1 n}\right) d s\right]^{-1} \\
& S=\pi \rho_{z} \sum_{m=1}^{M_{n}} Q_{n m^{2}} \omega_{1} \int_{\Gamma_{n}} G_{n}\left(\xi, \eta, \zeta_{n}, \xi_{0 m}^{n}, \eta_{0 m}^{n}, \zeta_{n}{ }^{\circ}\right) w_{n} d s
\end{align*}
$$

In (4.5) we take as w_{n} the eigenfunction corresponding to the eigenvalue ω_{1}. Solving system (4.5) simultaneously and using the known expression for $\Phi\left(u, w_{n}, \tau\right)$, we can plot the resonance curve $u=f(w)$. To refine the sag, we find the function u_{1} from (4.4). After finding the w_{n}, the velocity field is calculated from (2.3).

REFERENCES

1. RIMSKII-KORSAKOV A.V. and YANSHCHIKOV V.S., infrasonic technique and technology - a new trend in intensifying liquid-phase technological processes, Vestn. Akad.Nauk SSSR, 7, 1980.
2. VOL'MIR A.S., Non-linear Dynamics of Plates and Shells, Nauka, Moscow, 1972.
3. TIKHONOV A.N. and ARSENIN V.YA., Methods of Solving Ill-Possed Problems, Nauka, Moscow, 1979.
4. LADIZHENSKAYA O.A. Mathematical Problems of Incompressible Viscous Fluid Dynamics, Nauka, Moscow, 1970.
5. ALEKSIDZE M.A., Solution of Boundary Value Problems by the Method of Expansion in Nonorthogonal Functions, Nauka, Moscow, 1978.
6. MOISEYEV N.N. and RUMYANTSEV V.V., Dynamics of a Body with Cavities containing Fluid, Nauka, Moscow, 1965.
7. PISARENKO G.S., Oscillations of Mechanical Systems Taking into Account the Imperfect Elasticity of the Material, Naukova Dumka, Kiev, 1970.

Translated by D.E.B.

an analytical solution of the problem of convective diffusion in the neighbourhood of a discontinuity of the catalytic properties of a surface*

I.G. BRYKINA

Abstract

The problem of convective diffusion when a binary mixture flows round a plate when there is a line of discontinuity of the catalytic properties on the plate is considered. The effect of longitudinal diffusion is taken into account. The surface is assumed to be non-catalytic up to the discontinuity but possesses a finite catalytic activity after the discontinulty. At low values of the coefficient of catalytic activity, an analytic solution of the problem is obtained by the application of a Fourier transform. The asymptotic forms of the solution are found in the form of simple formulae both near the remote from the point of discontinuity of the boundary conditions and both upstream and downstream. A comparison is made with the solutions obtained in the boundary layer approximation and by a numerical method /1/.

The problem of convective diffusion (or themal conductivity) in the case of a transition from a not-catalytic surface onto an ideally catalytic surface has been solved /2, 3/ by the Wiener-Hopf method.

1. The stationary flow of a two component incompressible liquid or gas with constant diffusion properties and a linear velocity profile ($u^{\prime}=V L^{-1} y^{\prime}, v^{\prime}=0$) in the x^{\prime} direction around an infinite plate $y^{\prime}=0$, on the surface of which a heterogeneous first-order reaction occurs, is considered. The surface is assumed to be non-catalytic in the half-plane $y^{\prime}=0, x^{\prime}<0$ and to possess a finite catalytic activity in the half plane $y^{\prime}=0, x^{\prime}>0$.

The diffusion equation (which is identical in form to the heat conduction equation) and the boundary conditions in this case have the form

$$
\begin{align*}
& y \frac{\partial c}{\partial x}=\frac{\partial^{2} c}{\partial x^{2}}+\frac{\partial^{2} c}{\partial y^{2}}, \quad-\infty<x<\infty, y>0 \tag{1.1}\\
& x \rightarrow-\infty, \forall y \text { and } y \rightarrow \infty, \forall x: c \rightarrow c_{0} \tag{1.2}\\
& y=0, \quad x<0: \frac{\partial c}{\partial y}=0 ; \quad y=0, \quad x>0: \quad \frac{\partial c}{\partial y}=k c ; \\
& k=\left(\frac{L}{V D}\right)^{1 / x} k^{\prime}
\end{align*}
$$

Here k^{\prime} is the rate constant for the neterogeneous recombination on the surface, and the dimensionless variables x and y are related to the dimensional variables in the following manner:

$$
x^{\prime}=\left(\frac{D L}{V}\right)^{1 / s} x, \quad y^{\prime}=\left(\frac{D L}{V}\right)^{1 / s} y
$$

(D is the coefficient of diffusion and a is the concentration).
Let us consider the case when $k \leqslant 1$. A solution of the problem can then be sought in the form

$$
\begin{equation*}
c=c_{0}(1-k f+\ldots) \tag{1.3}
\end{equation*}
$$

For the function $f(x, y)$ we obtain an equation, which is identical to (1.1), while the boundary conditions take the form

